Saturday, January 3, 2009

Pre-History:

As we can tell already, and as with the telephone (internal link), a radio is an electrical instrument. A thorough understanding of electricity was necessary before inventors could produce a reliable, practical radio system. That understanding didn't happen quickly. Starting with the work of Oersted in 1820 and continuing until and beyond Marconi's successful radio system of 1897, dozens of inventors and scientists around the world worked on different parts of the radio puzzle. In an era of poor communication and non-systematic research, people duplicated the work of others, misunderstood the results of other inventors, and often misinterpreted the results they themselves had achieved. While puzzling over the mysteries of radio, many inventors worked concurrently on power generation, telegraphs, lighting, and, later, telephones. We should start at the beginning.

In 1820 Danish physicist Christian Oersted discovered electromagnetism, the critical idea needed to develop electrical power and to communicate. In a famous experiment at his University of Copenhagen classroom, Oersted pushed a compass under a live electric wire. This caused its needle to turn from pointing north, as if acted on by a larger magnet. Overstep discovered that an electric current creates a magnetic field. But could a magnetic field create electricity? If so, a new source of power beckoned. And the principle of electromagnetism, if fully understood and applied, promised a new era of communication.

In 1821 Michael Faraday reversed Oersted's experiment and in so doing discovered induction (internal link). He got a weak current to flow in a wire revolving around a permanent magnet. In other words, a magnetic field caused or induced an electric current to flow in a nearby wire. In so doing, Faraday had built the world's first electric generator. Mechanical energy could now be converted to electrical energy. Is that clear? This is a very important point. The simple act of moving ones' hand caused current to flow. Mechanical energy into electrical energy. But current was produced only when the magnetic field was in motion, that is, when it was changing.

Faraday worked through different electrical problems in the next ten years, eventually publishing his results on induction in 1831. By that year many people were producing electrical dynamos. But electromagnetism still needed understanding. Someone had to show how to use it for communicating.

In 1830 the great American scientist Professor Joseph Henry transmitted the first practical electrical signal. A short time before Henry had invented the first efficient electromagnet. He also concluded similar thoughts about induction before Faraday but he didn't publish them first. Henry's place in electrical history however, has always been secure, in particular for showing that electromagnetism could do more than create current or pick up heavy weights -- it could communicate.

Joseph HenryIn a stunning demonstration in his Albany Academy classroom, Henry created the forerunner of the telegraph. Henry first built an electromagnet by winding an iron bar with several feet of wire. A pivot mounted steel bar sat next to the magnet. A bell, in turn, stood next to the bar. From the electromagnet Henry strung a mile of wire around the inside of the classroom. He completed the circuit by connecting the ends of the wires at a battery. Guess what happened? The steel bar swung toward the magnet, of course, striking the bell at the same time. Breaking the connection released the bar and it was free to strike again. And while Henry did not pursue electrical signaling, he did help someone who did. And that man was Samuel Finley Breese Morse.

In 1837 Samuel Morse invented the first practical telegraph, applied for its patent in 1838, anSamuel Morsed was finally granted it in 1848. Joseph Henry helped Morse build a telegraph relay or repeater that allowed long distance operation. The telegraph united the country and eventually the world. Not a professional inventor, Morse was nevertheless captivated by electrical experiments. In 1832 he had heard of Faraday's recently published work on inductance, and was given an electromagnet at the same time to ponder over. An idea came to him and Morse quickly worked out details for his telegraph.

No comments:

Post a Comment